......(更多)
......(更多)
......(更多)
S是有序集,而$E \subset S$,如果存在$\beta \in S$,而对于任何$x \in E$,满足$x \leq \beta$,那么就说E有上界,并且$\beta$是E的上界。
规定γ为所有α∈A的并。换言之,p∈γ当且仅当对某个α∈A有p属于伽马。今证γ∈R,且γ=supA。
固定b>1。 (a)如果m,n,p,q 是整数,n>0,q>0,且r=m/n=p/q。证明 (b^m)^(1/n)=(b^p)^(1/q) 因此,定义b^r=(b^m)^(1/n)有意义。
......(更多)