好书推荐 好书速递 排行榜 读书文摘

Euler's Gem

Euler's Gem
作者:David S. Richeson
副标题:The Polyhedron Formula and the Birth of Topology
出版社:Princeton University Press
出版年:2008-09
ISBN:9780691126777
行业:其它
浏览数:27

内容简介

Leonhard Euler's polyhedron formula describes the structure of many objects - from soccer balls and gemstones to Buckminster Fuller's buildings and giant all-carbon molecules. Yet Euler's formula is so simple it can be explained to a child. "Euler's Gem" tells the illuminating story of this indispensable mathematical idea. From ancient Greek geometry to today's cutting-edge research, "Euler's Gem" celebrates the discovery of Euler's beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. In 1750, Euler observed that any polyhedron composed of V vertices, E edges, and F faces satisfies the equation V-E+F=2.David Richeson tells how the Greeks missed the formula entirely; how Descartes almost discovered it but fell short; how nineteenth-century mathematicians widened the formula's scope in ways that Euler never envisioned by adapting it for use with doughnut shapes, smooth surfaces, and higher dimensional shapes; and, how twentieth-century mathematicians discovered that every shape has its own Euler's formula. Using wonderful examples and numerous illustrations, Richeson presents the formula's many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who's who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem's development, "Euler's Gem" will fascinate every mathematics enthusiast.

......(更多)

作者简介

......(更多)

目录

Preface ix

Introduction 1

Chapter 1: Leonhard Euler and His Three “Great” Friends 10

Chapter 2: What Is a Polyhedron? 27

Chapter 3: The Five Perfect Bodies 31

Chapter 4: The Pythagorean Brotherhood and Plato’s Atomic Theory 36

Chapter 5: Euclid and His Elements 44

Chapter 6: Kepler’s Polyhedral Universe 51

Chapter 7: Euler’s Gem 63

Chapter 8: Platonic Solids, Golf Balls, Fullerenes, and Geodesic Domes 75

Chapter 9: Scooped by Descartes? 81

Chapter 10: Legendre Gets It Right 87

Chapter 11: A Stroll through Königsberg 100

Chapter 12: Cauchy’s Flattened Polyhedra 112

Chapter 13: Planar Graphs, Geoboards, and Brussels Sprouts 119

Chapter 14: It’s a Colorful World 130

Chapter 15: New Problems and New Proofs 145

Chapter 16: Rubber Sheets, Hollow Doughnuts, and Crazy Bottles 156

Chapter 17: Are They the Same, or Are They Different? 173

Chapter 18: A Knotty Problem 186

Chapter 19: Combing the Hair on a Coconut 202

Chapter 20: When Topology Controls Geometry 219

Chapter 21: The Topology of Curvy Surfaces 231

Chapter 22: Navigating in n Dimensions 241

Chapter 23: Henri Poincaré and the Ascendance of Topology 253

Epilogue The Million-Dollar Question 265

Acknowledgements 271

Appendix A Build Your Own Polyhedra and Surfaces 273

Appendix B Recommended Readings 283

Notes 287

References 295

Illustration Credits 309

Index 311

......(更多)

读书文摘

欧拉在这封信中借用了莱布尼茨创造的术语geometriam situs,意思是位置几何学。这个术语后来变成了位置分析学,最终又变成了拓扑学。莱布尼茨指的是一个新数学领域,它“直接与位置打交道,就像代数与量打交道那样”。关于欧拉是否误解了菜布尼茨的术语,学者们意见不一;尽管如此,欧拉确实认同菜布尼茨的想法,觉得需要一种新的数学技巧来处理七桥问题。

......(更多)

猜你喜欢

点击查看